144 research outputs found

    A Universal Framework for Holographic MIMO Sensing

    Full text link
    This paper addresses the sensing space identification of arbitrarily shaped continuous antennas. In the context of holographic multiple-input multiple-output (MIMO), a.k.a. large intelligent surfaces, these antennas offer benefits such as super-directivity and near-field operability. The sensing space reveals two key aspects: (a) its dimension specifies the maximally achievable spatial degrees of freedom (DoFs), and (b) the finite basis spanning this space accurately describes the sampled field. Earlier studies focus on specific geometries, bringing forth the need for extendable analysis to real-world conformal antennas. Thus, we introduce a universal framework to determine the antenna sensing space, regardless of its shape. The findings underscore both spatial and spectral concentration of sampled fields to define a generic eigenvalue problem of Slepian concentration. Results show that this approach precisely estimates the DoFs of well-known geometries, and verify its flexible extension to conformal antennas

    Joint Channel and Direction Estimation for Ground-to-UAV Communications Enabled by A Simultaneous Reflecting and Sensing RIS

    Full text link
    Hybrid Reconfigurable Intelligent Surfaces (HRISs), which are capable of simultaneous programmable reflections and sensing, are expected to play a significant role in future wireless networks, enabling various Integrated Sensing and Communication (ISAC) applications. In this paper, we focus on HRIS-enabled Unmanned Aerial Vehicle (UAV) networks and design the HRIS parameters (phase profile, reception combining, and the power splitting between the two functionalities) for jointly estimating the individual UAV-HRIS and HRIS-base-station channels as well as the Angle of Arrival (AoA) of the Line-of-Sight (LoS) component of the UAV-HRIS channel. We derive the Cram\'er Rao lower bounds for the estimated channels and evaluate the performance of the proposed approach in terms of the channel estimation error and the LoS AoA estimation accuracy, verifying its effectiveness for HRIS-enabled ground-to-UAV wireless communication systems.Comment: 5 pages, 3 figures, submitted to IEEE ICASSP 202

    Simultaneous Indoor and Outdoor 3D Localization with STAR-RIS-Assisted Millimeter Wave Systems

    Full text link
    Simultaneously transmitting (refracting) and reflecting reconfigurable intelligent surfaces (STAR-RISs) have been recently identified to improve the spectrum/energy efficiency and extend the communication range. However, their potential for enhanced concurrent indoor and outdoor localization has not yet been explored. In this paper, we study the fundamental limits, i.e., the Cram\'er Rao lower bounds (CRLBs) via Fisher information analyses, on the three-dimensional (3D) localization performance with a STAR-RIS at millimeter wave frequencies. The effect of the power splitting between refraction and reflection at the STAR-RIS as well as the power allocation between the two mobile stations (MSs) are investigated. By maximizing the principal angle between the two subspaces corresponding to the STAR-RIS reflection and refraction matrices, we are able to find the optimal solutions for these simultaneous operations. We verify that high-accuracy 3D localization can be achieved for both indoor and outdoor MSs when the system parameters are well optimized.Comment: 6 pages, 6 figures, submitted to IEEE VTC Fal

    Performance Analysis and Resource Allocation of STAR-RIS Aided Wireless-Powered NOMA System

    Full text link
    This paper proposes a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided wireless-powered non-orthogonal multiple access (NOMA) system, which includes an access point (AP), a STAR-RIS, and two non-orthogonal users located at both sides of the STAR-RIS. In this system, the users first harvest the radio-frequency energy from the AP in the downlink, then adopt the harvested energy to transmit information to the AP in the uplink concurrently. Two policies are considered for the proposed system. The first one assumes that the time-switching protocol is used in the downlink while the energy-splitting protocol is adopted in the uplink, named TEP. The second one assumes that the energy-splitting protocol is utilized in both the downlink and uplink, named EEP. The outage probability, sum throughput, and average age of information (AoI) of the proposed system with TEP and EEP are investigated over Nakagami-m fading channels. In addition, we also analyze the outage probability, sum throughput, and average AoI of the STAR-RIS aided wireless-powered time-division-multiple-access (TDMA) system. Simulation and numerical results show that the proposed system with TEP and EEP outperforms baseline schemes, and significantly improves sum throughput performance but reduces outage probability and average AoI performance compared to the STAR-RIS aided wireless-powered TDMA system. Furthermore, to maximize the sum throughput and ensure a certain average AoI, we design a genetic-algorithm based time allocation and power allocation (GA-TAPA) algorithm. Simulation results demonstrate that the proposed GA-TAPA method can significantly improve the sum throughput by adaptively adjusting system parameters.Comment: 30 pages, 12 figure

    Walsh Meets OAM in Holographic MIMO

    Full text link
    Holographic multiple-input multiple-output (MIMO) is deemed as a promising technique beyond massive MIMO, unleashing near-field communications, localization, and sensing in the next-generation wireless networks. Semi-continuous surface with densely packed elements brings new opportunities for increased spatial degrees of freedom (DoFs) and spectrum efficiency (SE) even in the line-of-sight (LoS) condition. In this paper, we analyze holographic MIMO performance with disk-shaped large intelligent surfaces (LISs) according to different precoding designs. Beyond the well-known technique of orbital angular momentum (OAM) of radio waves, we propose a new design based on polar Walsh functions. Furthermore, we characterize the performance gap between the proposed scheme and the optimal case with singular value decomposition (SVD) alongside perfect channel state information (CSI) as well as other benchmark schemes in terms of channel capacity. It is verified that the proposed scheme marginally underperforms the OAM-based approach, while offering potential perspectives for reducing implementation complexity and expenditure.Comment: Submission to ICEAA 202

    The Developing Blueberry Industry in China

    Get PDF
    The present situation of blueberry industry in China was summarized. The six main blueberry cultivation areas in China were reviewed and practical suggestions were made. Reference and guidance for water management of rabbiteye blueberry in Yangtze river basin was provided, and water physiological characteristics and water requirement of blueberry were also clarified so as to provide scientific management of blueberry. Effects of vinegar residue on soil physical and chemical properties, enzymatic activities, growth of blueberry, nutrient uptake, and fruit quality were studied. The effect of vinegar residue on the growth of blueberry and the mechanism revealed from the perspective of soil amelioration were also discussed from the results
    • …
    corecore